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ABSTRACT

The periodogram, the square of the magnitude of the Fourier

Transform, is widely used to estimate the spectral content of

sampled processes. The performance of the periodogram is

degraded by spectral leakage. This is the consequence of

processing finite-length data records. Classical means of

enhancing periodogram performance are the use of tapered

window functions and averaging of several periodograms. These

methods smooth the spectral estimate, but at a loss of

resolution. A non-stationary Kalman filter was applied to the

periodogram of untapered (i.e., rectangular windowed) time

data in an effort to smooth the noise portions of the

periodogram while leaving the main spectral response

unaltered. The Kalman filter was able to enhance the

periodogram. Best results were obtained in the single

spectral peak case. Even in the case of multiple spectral

peaks, the resolution of the unfiltered periodogram was

largely preserved since the filtering algorithm was designed

to selectively smooth the noise-only segments of the spectral

estimate.
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I. INTRODUCTION

The periodogram, the square of the magnitude of the

Fourier Transform, is widely used to estimate the spectral

content of sampled processes. The periodogram remains popular

in the face of more modern spectral estimation techniques

(i.e., parametric modeling) due to its low cost and ease of

implementation in real time. The performance (ability to

detect signals in noise) of the periodogram is degraded by

window function sidelobe effects. This is the unavoidable

consequence of processing data records of finite length. In

addition; the periodogram may have a fairly large variance

(i.e., mean equals the standard deviation under noise-only

conditions). A classical means of enhancing the performance

of the periodogram is the use of tapered window functions,

such as the Hamming window, in order to minimize the effects

of the discontinuity at the boundaries of the finite

observation. Another common method is to average a series of

periodograms in an effort to smooth the spectral estimate

(i.e., reduce the variance of the estimate). Almost

invariably, the consequences of these techniques are a

broadening of the main spectral peaks and a corresponding loss

of spectral resolution. What is proposed here is an

application of a non-stationary Kalman filter to the sequence

presented by the periodogram of untapered (i.e., rectangular



windowed) time data. The objective is to filter (smooth) the

noise portions of the spectral estimate and leave the main

spectral responses unaltered. The result is that the dominant

spectral peaks will be highlighted against the noise "floor"

out of which they rise. Since the main spectral peaks are

unaltered, the resolution of the original periodogram is

preserved. Using the test cases of single and multiple

sinusoids in Gaussian white noise, the Kalman filter's

performance was evaluated for signal detectability and

resolution at different input signal-to-noise ratios on

multiple noise realizations. The effects of varying the

filter's detection parameter and the data/transform length

were also investigated.
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II. CLASSICAL SPECTRAL ESTIMATION

A. BACKGROUND

Estimation of the power spectral density (PSD) of sampled

deterministic or stochastic processes is usually based on

techniques employing the Fast Fourier Transform (FFT). These

techniques are computationally efficient and produce good

results for many different types of signals. There are,

however, two significant limitations associated with the FFT-

based techniques. First and foremost is the problem of

frequency resolution, that is, the ability to distinguish

between the presence of one or several spectral components in

a given sample set of data. Frequency resolution of

stationary signals varies with the specific technique employed

but, in general, it is proportional to the reciprocal of the

time interval represented by the sample. The second

limitation of the FFT-based methods is caused by the windowing

of the data that occurs during processing. Windowing causes

"leakage" in the spectral domain. Energy in the main lobe of

a spectral response "leaks" into adjacent sidelobes, obscuring

and distorting the spectral responses due to other frequency

components that may be present. In some cases, weak spectral

responses may be completely masked by the sidelobes of

stronger spectral responses and thus go undetected. Careful

selection and use of tapered data windows can reduce sidelobe
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leakage, but always at the cost of reduced frequency

resolution [Ref. 1).

B. CLASSICAL SPECTRAL ESTIMATION TECHNIQUES

The two best-known classical spectral estimation

techniques are the Blackman-Tukey method and the periodogram.

The Blackman-Tukey approach, introduced in 1958 [Ref. 2],

first estimates the autocorrelation function from the data

and then Fourier transforms the correlation estimates to

obtain a power spectral density estimate. The Blackman-Tukey

spectral estimator is given by:

N-I%,F, ()=,(k) exp,(-j2;zk) (2.1)

S= -CtN -:;
where

-± X *(n),(n-k); k= 0, 1,2,... ,(N -1)
f,,(k) = N

itj, -r); k -(N- 1),-(N - )..,- .2

This is a biased estimator of the true autocorrelation

function since:

N " AL1F,,(k) 1k(,1 (2.3)

The mean value of the autocorrelation function estimator

shows that a triangular (Bartlett) window is applied to the
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trite autocorrelation function. It is possible to use an

unbiased autocorrelation function estimator by replacing the

normalization by I/N in (2.2) with l/(N-Ikl). This, however,

can lead to a negative spectral estimate since the unbiased

autocorrelation estimator does not guarantee a positive semi-

definite sequence. The Blackman-Tukey approach was the most

popular spectral estimation technique until the introduction

of the FFT algorithm (Refs. 3 and 4].

The periodogram spectral estimate is obtained from the

square of the magnitude of the Fourier transform of the data.

The data may be weighted by a window function and/or zero-

padded. The true spectral estimator is given by:

1 2
2A1+1 x(n)exp (2.4)

If we ignore the expectation operator and use only the

available data, the spectral estimator, denoted as the

periodogram, is given by:

2
N-I: 25

I'FE Rf N- x(tt)eXP(-j27ffn) (2.5)

The periodogram produces best results when an integer

multiple of periods of constituent frequency components arc

present in the observation. Despite the advent of more modern
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techniques, the periodogram remains a popular means of

spectral estimation because it can be easily and inexpensively

implemented in real time.

In general, the Blackman-Tukey and the periodogram

spectral estimates are not identical. If, however, the biased

autocorrelation estimate (2.2) is used and as many

autocorrelation lags as data samples (N) are computed, then

the Blackman-Tukey and periodogram estimators yield identical

numerical results.

C. WINDOW FUNCTIONS

Every set of data is finite in duration. Processing a

finite duration observation presents special problems to the

harmonic analysis of the data. Some considerations should be

given to detectability of spectral components in the presence

of nearby strong components and their resolvability. Let the

data to be processed consist of N uniformly-spaced samples of

the observed signal. The FFT, the basis of the periodogram

spectral estimator, assumes sequences to be periodic. In

other words, the sample set under analysis is assumed to be

one complete period of an infinitely long periodic sequence.

The selection of a finite time interval of NT seconds, where

T is the time between samples, and of the orthogonal

trigonometric basis over this interval leads to an interesting

peculiarity of the spectral expansion. From the continuum of

possible frequencies, only those which coincide with the basis
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functions (the bin centers of the FFT) will project onto a

single basis vector. All other frequencies will exhibit non-

zero projections on the entire basis set. This phenomena is

called spectral leakage and is a consequence of processing

finite duration data records [Ref. 1].

Spectral components with frequencies other than those

corresponding to tie FFT bin centers will typically be present

in the observed data. Components with frequencies not at bin

centers are not periodic in the observation window. The

periodic extension of a signal which does not coincide with

the natural periods of its constituent frequency components

exhibits discontinuities at the boundaries of the observation.

These discontinuities are responsible for spectral

contributions (leakage) over the entire range of the FFT

frequency bins.

Since we are constrained to deal only with finite-length

data, we are forced to make certain assumptions about the data

outside of the observation interval. The finite data record

may be considered as having been obtained by multiplying an

infinite length data sequence with a simple rectangular

function:

w l)=J; n = o,1,2...,(N-1)(26u,(1)) (2.6)

[0; otherwise
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The assumption that the data outside of the observation

window is zero is unrealistic but unavoidable. Thus, data

taken "as is" is actually rectangularly windowed. Non-

rectangular window functions are weighting functions applied

to the received data in order to reduce the spectral leakage

associated with finite observation intervals. The purpose of

the window is to reduce the magnitude of the discontinuity at

the boundaries of the periodic extension. The goal of

windowing is, therefore, to smoothly taper the data record at

the boundaries.

By the Convolution Theorem, multiplication of the time

series by a window function corresponds in the frequency

domain to the convolution of the transforms of the signal

sequence and the window function. If we are using a

rectangular window and attempting to detect a narrow-band

signal, such as a sinusoid in noise, and the sinusoidal

frequency is not at a bin center, the convolution will spread

or smear some signal power into adjacent frequencies.

Conversely, if the sinusoid is at a bin center, then we will

see only the zero crossings of the window transform, and

experience no leakage. If we are using a non-rectangular

window (i.e., a Hamming window), the convolution operation

will smear the signal power into adjacent frequencies

regardless of the sinusoidal frequency being at a bin center

or not.
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Leakage has an obvious negative effect on the detection

and estimation of sinusoidal components. Sidelobes from

adjacent frequency components may add in an unpredictable

fashion to the spectral peak of a weak signal, thus distorting

the power estimate of that signal. In extreme cases, the

sidelobes of strong frequency components may completely mask

the main lobe of nearby weaker signals [Ref. 3].

In general, the convolution of the window transform with

the signal transform means that the main lobe width of the

window transform is the limiting factor (in terms of spectral

response) that allows separation of two closely-spaced

spectral lines. For a rectangular window, the main lobe width

between the 3-dB levels of the resulting digital sinc function

(the FFT of a rectangle function) is approximately the

reciprocal of the observation interval NT. Leakage effects

can be reduced by the use of windows with non-uniform

weighting, such as the Blackman and Hamming windows.

Consider, for example, the problem of detecting a

sinusoidal signal embedded in Gaussian white noise. Assuming

that the observation interval does not contain an integer

multiple of periods of the sinusoid, then the frequency of the

sinusoid is not at a bin center of the FFT. Some spectral

leakage will occur. Recall from basic Fourier theory that the

transform of a sinusoid (say a cosine function) is a pair of

delta functions given by:

cos(2 t) (2.7)
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Assuming that the data is obtained by rectangular

windowing of an infinitely long sequence (i.e., multiplication

of the time series by the window function), then the

periodogram will be, by the Convolution Theorem, the square

of the magnitude of the convolution of the delta function pair

with the Discrete Fourier Transform of the rectangle function

(a digital sinc function). The digital sinc function is of

the form:

DN(f) Texp(-j2lfF[N - ])in(f(28T)

Recall from Fourier theory that the convolution of some

function, call it F(f), with a delta function, results in the

translation of F(f) to the location of the delta function.

In this case, the sinc function will be shifted to the

location of the delta function dictated by the signal

frequency. If the location of the delta function does not

exactly coincide with a bin center of the FFT, leakage will

occur.

At this point, some discussion of zero-padding is in

order. Zero-padding the data sequence prior to the Fourier

transformation will not improve the resolution of the

periodogram. The purpose of zero-padding is twofold. First,

it will interpolate additional power spectral density values

in the interval [-f,/2, f,/2], where f, is the sampling

frequency [Ref. 3] between those that would have been obtained

in a non-zero-padded transform. Second, since the number of
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observed data points is not always a power of two, zero-

padding is necessary to make the sequence length a power of

two to allow the use of a FFT. Consider the Discrete Fourier

Transform of an eight-point rectangular window. We know that

this transform will produce a digital sinc function. However,

when we actually compute and plot the transform, we observe

only a central spike at the zero spectral location. (Figure

1). Why do we not see any of the side lobe structure that we

know must be present? The side lobes are in fact there. They

are not visible because the FFT of the non-zero-padded time

series interrogates the resultant digital sinc function at its

zero-crossings and hence, the side lobe structure is invisible

to us. In other words, the FFT bin centers are coincident

with the digital sinc's zero-crossings. Now examine what

happens when the eight-point rectangle is zero-padded to

sixteen points and then transformed (Figure 2). The side

lobes are now clearly visible because we are interpolating a

point in between the bin centers of the previous eight-point

(non-zero-padded) transform. This principle can now be

extended to an actual spectral estimation example.

Consider a unit amplitude sinusoid embedded in Gaussian

white noise. In this example, the number of data points N is

64 and a rectangular window is used. The sinusoidal frequency

is 10.0 Hz and the sampling frequency, f,, is 64.0 Hz. The

variance of the additive Gaussian white noise is 1/2000. This

11



corresponds to a signal-to-noise ratio (SNR) of 30 dB where

SNR is defined as:

sinusoidal amplitude (A)-

SNR=l1o .noise a2)0J] (2.9)

(variance)

where A = amplitude of the sinusoid.
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In this example, the bin centers of the FFT occur at

integer multiples of f/N, which in this case is 64/64 or 1

Hz. Figure 3 shows that the spectral peak is well defined

since the sinusoidal frequency lies exactly at a bin center

and no zero-padding was performed prior to transformation.

We do not see the side lobe structure of the digital sinc

(transform of the rectangle function). Observe in Figure 4

what occurs when the frequency detected does not coincide with

a bin enter. In this case, the frequency is 10.7 Hz, which

is clearly not a bin center. The side lobes of the digital

sinc function are now visible since we are not interrogating

the sinc at points of its zero crossing. In addition,

spectral leakage has smeared the signal power into the

adjacent frequency bins. The end result is a much broader and

less-pronounced main lobe (25 vs. 40 dB).

To illustrate the effects of zero-padding, let us now

consider the situation in which the original 64-point data

record has been zero-padded to 128. Now, regardless of

whether or not the sinusoidal frequency is at a bin center,

the side lobes of the digital sinc will now be visible as a

result of the zero-padding (see Figures 5 and 6). The net

effect will be a less pronounced main lobe due to the side

lobes. In the case of f = 10.7 (Figure 6), the main lobe is

flattened due to a combination of the sinc side lobes and

spectral leakage.
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D. WINDOWS WITH NON-UNIFORM WEIGHTING

For comparison, the original 64-point data records for

sinusoidal frequencies 10.0 and 10.7 Hz are weighted with a

Hamming window prior to zero-padding and Fourier

transformation (Figures 7 and 8). The Hamming window

function, popular due to its good performance and ease of

implementation, has a maximum side lobe level of -43 dB versus

-13 dB for a rectangular window. The price paid for this side

lobe suppression is increased main lobe width. The 3-dB main

lobe width becomes 1.30 bins versus 0.89 bins for the

rectangular window. The Hamming window is only one of many

such functions. An exhaustive comparison of window functions

and their use in spectral analysis is given by Harris [Ref.

1]. Many other windows, with even more dramatic reduction of

side love levels, are possible. In all cases, however, the

side effect is always a broadening of the main lobe with its

associated reduction in spectral resolution [Refs. 1 and 3].
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E. STATISTICAL PROPERTIES OF THE PERIODOGRAM

Consider a data record of samples of Gaussian white noise

having zero mean and variance a.2. The periodogram of this

data will have a distribution which is chi-squared with two

degrees of freedom. The reason for this is that the sampled

Gaussian random process, denoted as x(n), has the

distribution:

x(11) - X2
(2.10)

For simplicity let us assume that the Fourier Transform

of x(n) is normalized by 1/SQRT(N), where N is the size of

the transform. Since the real and imaginary parts of the

Fourier Transform of x(n), denoted as A(f) and B(f)

respectively, are orthogonal linear combinations of x(n), it

follows that A(f) and B(f) are mutually uncorrelated Gaussian

random variables each having the distribution N(0, Ca2). The

periodogram of x(n), P,(f), is defined as the sum of the

squared real and imaginary parts of the Fourier Transform of

x(n)!

2(f)±l3 2(f) (2.11)

The sum of the squares of two independent zero-mean normal

variables is a chi-squared distribution with two degrees of

freedom. The mean and variance of this distribution is given

by:
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EIP.,f)12CF., all p
(2.12)

4 4 ; p 0N

Var[Px(fp)] - X2

8I,, p0 (2.13)
'2

where f, denotes the sampling frequency [Ref. 4].

Proof of equation 2.13 for frequencies pO, N/2 is given

in the following fashion:

Consider:

P, =A 2 +B 2

where A- N O, U2 (2.14)

B -NO'C)

Var[PJ = ElP 2 j - (E[P,]) 2 . (2.15)

We know that:

E[P,2] = E[(A ' + B 2)1]( 
. 6

= E[A 4 +2A 2 B2 +B4]

= 8Cx4

and that from (2.12):

E[ PX 2,. 2

24



Therefore,

Va tLI = E[I'J -(1:1P, I( 1
4 2U4(2.17)

404ox

F. PERIODOGRAM AVERAGING

The statistical properties of the periodogram may be

improved by averaging a set of periodograms together. Assume

that K independent data records are available, all for the

interval 0 < n < (L - 1) and all are realizations of the same

random process. The data is: {xo(n), 0 < n < L - 1; x,(n), 0 <

n < L - 1; . . . x,,(n), 0 < n < L - 1). The averaged

periodogram estimator is given by:

K-1
I'Av(f) -, 'EPit,,,(f) (2.18)

where II'ER,,(f) is the periodogram of the mth data set:

?-'PER??(f) = ->j,,(n) exp,(-jZ~tfn) (2.19)

The mean value of the averaged periodogram will be the same

as that of the periodogram based upon any of the individual

data sets since periodograms for each set are independent and

identically distributed. The variance of the periodogram will

25



be reduced by a factor of K as a result of the averaging

operation. [Ref. 2]

Val [fAV (f) =IVarPPERmI

(2.20)

In actual practice, we seldom have independent data sets. It

is more common to have one long data record of length N. A

common technique is to segment the data into K non-overlapping

blocks of length L, where N = KL. Since the blocks are

contiguous, they cannot be uncorrelated for any process except

white noise. Therefore, the actual variance reduction is

bounded by a factor less than or equal to K. If the data are

Gaussian white noise samples, the autocorrelaton function of

the data will decay rapidly and the blocks will be

uncorrelated. Thus, the periodograms of the data segments

will be independent and (2.20) will be accurate. [Ref. 3].

As an illustration, Figure 9 is the periodogram of 64 samples

of Gaussian white noise (zero mean, variance 1/2000). Contrast

this with Figure 10, which is the average of the periodograms

of 5 independent 64-point data records obtained by segmenting

a 320-point record of white noise samples with the same

statistical properties. From (2.11), the predicted variance

of the Figure 9 periodogram is 4(1/2000)2 = 2.5 x 10-1 for p

0, N/2. From (2.18) we would expect a variance reduction by

a factor of 1/N = 1/5 or 6.9 dB for the average periodogram.
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The actual measured variance reduction between the single and

averaged periodograms is 6.7 dB. A variation of this

averaging scheme was proposed by Welch [Ref. 5] involving the

application of a non-rectangular window function to each data

segment and overlapping the segments (typically in a 4:1

ratio).

In interpreting spectral estimates, it is important to be

able to discriminate between spectral detail due to

statistical fluctuation and actual frequency content. A

standard way of evaluating the goodness of a spectral

estimator is via confidence intervals. A means of deriving

a confidence interval for the averaged periodogram is

described in References 3 and 6.
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G. SPECTRAL SMOOTHING THE DANIELL PERIODOGRAM

Daniell suggested that a means of smoothing the

fluctuations of the periodogram was to average over adjacent

spectral frequencies. [Ref. 7] He proposed a modified

periodogram estimate, P0(f), in which each frequency spectral

estimate was obtained by averaging over p spectral points on

both sides of the frequency f under consideration. The

Daniell Periodogram is given by:

1 i+p (2.21)
P0(h)- 2p+ I P(A)

2 p+ln=i-p 
(

A generalization of this concept is to pass the sample

spectrum through a low-pass filter with frequency response

H(f). The Daniell periodogram may then be expressed as the

convolution of the sample spectrum with a low-pass filter H(f)

[Ref. 7].

fb(f) (2.22)

The larger the p used, the greater the smoothing effect

will be. As with other methods, the price paid for smoothing

is a loss of resolution. Figure 11 shows the effect of

Daniell's operation (p=2) on a spectral estimate in which the

frequency of the test signal, 10.0 Hz, is at a bin center.

Figure 12 shows Daniell's method performed on a spectral

estimate where the frequency of the test signal, 10.7 Hz, is

not at a bin center.
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In summary, the FFT-based spectral estimation technique

(i.e., the periodogram) remains popular due to its

computational efficiency and good performance. Frequency

resolution (in Hz) is proportional to the reciprocal of the

length of the data measured in seconds. The ability to

resolve closely-spaced signal components is degraded by a

combination of side lobe effects and main lobe broadening.

Side lobe suppression is possible through the use of non-

uniformly weighted (non-rectangular) window functions but only

at the cost of main lobe broadening. Despite these

limitations and the advent of modern spectral estimation

techniques such as parametric modeling, the periodogram

remains the most popular spectral estimator as a result of its

relative simplicity, robustness, and ease of implementation

in real time.
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III. KALMAN FILTERING IN SPECTRAL ESTIMATION

A. BACKGROUND

A continuing problem with FFT-based spectral estimation

schemes is the trade-off between spectral resolution and side

lobe suppression. If a non-rectangular window function, i.e.,

the Hamming or Blackman window, is applied to time series data

for the purpose of minimizing spectral side lobes, the side

effect is a loss of resolution caused by the broadened

mainlobe. In general, the better the side lobe suppression,

the broader the main lobe. An extreme example is the minimum

4-sample Blackman-Harris window. The highest side lobe of

this window which is 92 dB down from the main lobe peak. The

cost of this level of side lobe attenuation is that the 3-dB

bandwidth (main lobe) is 1.90 bins versus 0.89 bins for a

rectangular window [Ref. 1]. What is proposed here is a novel

application of the Kalman filter to the periodogram for the

purpose of minimizing spectral sidelobe effects without the

usual attendant loss of resolution.

The Kalman filter program demonstrated here was written

by Dr. Roberto Cristi at the Nava. Postgraduate School,

Monterey, California in 1988. It is an implementation of the

filtering algorithm first proposed by Kalman and Bucy [Refs.

8 and 9] and is now widely used in control system theory.
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Czisti's program was originally developed to detect piecewise

constant segments of time series data corrupted by noise.

A discrete time state-space system model is given by:

(k + 1) = , _x(k) + ,% , y(k) + ,Ar v )(3.1)

y(k) = Cx(k) + w(k) (3.2)

where x(k) is the state vector, u(k) is the input, v(k) is an

input disturbance, y(k) is the observed data and W(k) is the

measurement noise. The discrete transition, input, input

disturbance and observation matrices are §, A , A,, and C

respectively. The input disturbance and measurement noise are

further specified by:

Ljv(k)j(k - ,)J-- (,,) 
(3.3)

l~w~~w~k+ W"I~ d3 (iji),
(3.4)

where V, and W, are covariance matrices.

The Kalman gain equations are given by:

L(k + Ilk) = 4PE(Alk)(,1T + ArVdA" (3.5)

L(k+ 1) = E(k -+ Ik)C' [CL(k + Ilk)C" + Wd (3.6)

L(k -1 Ilk + 1) = [I - (k + i)CJ_'(k +Ilk) (3.7)
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where P(k+lIk) denotes the covariance matrix at time k+1 given

observations to time k and K is the Kalman gain matrix. The

Kalman filter equations are given by:

i(k + ilk) = 4i(k) + Aa,(k) (3.8)

i(k + Ilk + 1) = X(k + llk)+ K(k + 1)[y(k + 1) - Ci(k + Ilk)](39

where x(k+llk) denotes the estimate of x at time k+l given

observations to time k. Note that the initial condition

PR(010) must be specified in order to start the process:

L(010) = o(3.10)

Equation 3.10 specifies the covariance matrix of the

initial error. The covariance matrix is a measure of the

confidence on the initial estimate x(0).

Consider the simple, one-dimensional problem of detecting

a piecewise constant time series segment corrupted by noise,

which was the original purpose of Cristi's program. The

signal and its noisy observation are given by:

x(k + 1) = x(k) (3.11)

y(k) = x(k) + zvk) (3.1 2)

where w(k) is the corrupting noise.
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Now define:

i(k) =y(k)-Ci(k) (3.13)

where x(k) is the estimate of x, C is some constant, and i is

the innovation sequence. The sequence i(k) represents new

information not contained in the previous observations y(k-

1), y(k-2),...y(O). Elements of the sequence i have the

property:

L[i(k)y(k-,h)J= 0 for allyn 1 (3.14)

Equation 3.14 states that each element of i is orthogonal

to all past observations.

Using Baye's theorem, we can compute the probability of

the observations (y(k), y(k-1),...y(O)) in the following

fashion:

Pr(y(k), y(k - 1)... y(J)) = Fj (y(k)Jy(k - l)...y(o)) li (y(k - 1)...y(O))
(3.15)

Utilizing the recursive property of this expression, we

can write:

k
Pr(y(k), y(k - 1)... y(O)) = I t (y(,?)ly(r - 1).. .y(O)) P(y(O)); ka 1 (3.16)

Using the Orthogonality Principle, it can be shown [Ref.

10):

Pi(y(k)jy(k - 1)...y(O)) - N(Ci(k),CI(k)C T + jd) (3. 17)
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where N denotes a normal distribution and W, is the covariance

matrix of the observation noise. At time k, it is then

possible to compute the probability Pr(y(k)Iy(k-l)...y(O)).

If the data under examination consists of piecewise constant

segments, then at each new observation two possibilities

exist:

1) the current observation is a continuation of the last

piecewise constant segment of data observed or

2) the current observation is the first element of a new

segment of data with a constant value.

What is now required is a means of computing the

probability that a transition between piecewise constant

sections has occurred. Let us now define a parameter 0 as

a means of quantifying the likelihood of a transition and a

binary random variable I as follows. If a transition has not

occurred, then I = 0 and the current observation is filtered

using a Kalman filter updated with the current gain. If a

transition has occurred, then 1 and the current

observation is filtered using reinitialized Kalman filter.

Now define the probability density functions:

I'r(y(k) =0) = ,,iexp(3) (3.18a)

r(y,(k) = ) t=,,exp(-) , (3.18b)
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1

where exp(p) + exp(-P) and k denotes the time index.

Assume that each '(k) is an independent event.

N
Pr(y(O), y(l)... y(N))= Pr(y(k)) (3.19)

K=O

We desire to maximize the expression:

I'r(r(k)jy(k), j(k - 1)) (3.20)

where y(k) is the vector of observations up to and including

the current time k and _ (k-i) is the vector of previous

estinates of the binary random variable X up to time (k-i).

Equation 3.20 is the probability of a transition or non-

transition (depending on 2 = 0 or X= 1), given present and

previous observations y and estimates of 1. We desire to

maximize Equation 3.20 with respect to y(k) and _(k-l) where

y(k) = [y(k),y(k - 1)... y(O)] (3.21)

- [y(k),y(k - 1)]

and

(k 1) [ (k-1), (k -2)... (o) (3.22)
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By Bayes' Theorem,

Pr(-(k-jy(k), &)) - 1))[Pr( y(k), y(k), j(k - 1))]

Pr(y(k), j(k - 1))J

P yk)y(k -1), y(k), j(k- 1)( . 3
- [Pr(y(k), j(k - 1)) 1)](.3

Pr(y(k)J& - 1), y(k), '(k - 1))- Pr(y(k -1), y(k), -(k - 1))]

Pr(y(k), j(k -1))

Assuming that 1(k) is independent of X(k-1) and I(k-l),

the second term in the numerator of (3.22) becomes:

Pr(y(k - 1), y(k), j(k - 1)) = Pr(y(k))I r(y(k - 1), (k -. )) (3.24)

Equation 3.23 is then maximized with respect to y(k) and

(k-l) by the expression:

max{Pr(r(kjy(k)i(k - 1))l

= max1Pr(y(k)y(k - 1), y(k), _(k - 1)) Pr(y(k))} (3.25)

Define the likelihood function:

L(y(k)jy(k), Y(k - 1))

I 110r(y(k)ly(k -1), y(k), j(k - 1))l+ nntr"r(k)) (
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Note that Pr(y(k)ly(k-1), -(k), J(k-l)) can be computed

by the modified version of (3.17):

I'r(y(k)Iy(k - 1), y(k), f(k - 1))

= Pr(y(k)ly(k- 1),y(k- 2)... y(k- ))

~ N(Ci(k),CI'(k)C
T + W ) (3.27)

where I is the time interval between the current sample k and

the last detected transition. Equation 3.27 is evaluated for

the two cases of an updated or reinitialized Kalman filter.

The probability Pr(2'(k)) can be computed via (3.18). Thus it

is possible, given each observation and those proceeding it,

to compute the probability that a transition between constant

valued segments has or has not occurred.

By selection of the parameter 1 (see Equation 3.18), it

is possible to adjust the likelihood that a transition will

occur. The larger the 0 selected, the less likely the filter

is to reinitialize. If "too small" a value of 0 is selected,

the filter will reinitialize too often and little smoothing

of the data will be done. If "too large" a P3 is used, the

filter will become too insensitive to fluctuations in the data

and will not reinitialize at all. In this case, transition

points will not be detected and the original data will be

obliterated (over-smoothed). Thus far, 0 must be determined

heuristically depending upon the type of data under

observation. In general, noisier data (more statistical
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fluctuation) will require more smoothing and thus larger

values for /-

Figures 12 - 16 demonstrate a test of the Y[iian filter

program on a square wave of amplitude +i corrupted by Gaussian

white noise of variance 0.40. Figure 13 shows the observed

data with the uncorrupted signal. Figures 14 - 16 show the

filtered data for 0 = 0.20, 4.00, and 50.00. Figure 14, P =

4.00, shows the case where a "good" value of j6 has been

chosen. Note that the filter correctly detects the actual

transitions in the observed data and reinitializes only at

these points. As a result, accurate recovery of the original

waveform is achieved. In contrast, Figure 15 shows what

occurs when too small a 3 is selected. The filter becomes too

sensitive to noise fluctuations, mistakenly im;erpreting many

of them as transitions. The filter reinitializes too often

(see lower plot of transition points) and less than optimum

smoothing is performed. Figure 16 is the case where too large

a 0 is used, rendering the filter too insensitive to

transitions in the observations. After the initialization,

the filter never detects a transition and thus never

reinitializes. The result is the obliteration (over

smoothing) of the true waveform.
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B. KALMAN FILTERING APPLIED TO THE PERIODOGRAM

Now that the Kalman filter program has been demonstrated

on a simple time series, the question arises: Can this

algorithm be adapted for smoothing spectral data? The

objective is to use the algorithm to smooth the periodogram

spectral estimate with minimal broadening of the main lobe(s)

of the dominant spectral responses. Ideally, an appropriate

value for the parameter p is selected such that the noise

portions of the periodogram are smoothed and transition points

are detectable on either side of the spectral main lobe(s).

The end result is a smoothed periodogram with the narrow main

lobes of the original, unfiltered periodogram preserved. The

noise "floor" out of which the signal peaks rise will be

better defined and, hopefully, the frequency resolution of the

original, unwindowed periodogram will be maintained.

The test signal used is a single sinusoid (unit amplitude)

embedded in Gaussian white noise. The sinusoidal frequency

is 10.7 Hz, which is not at a bin center. The signal is

sampled at 64 Hz. A record of 128 data points is zero-padded

to 256. The variance of the additive noise is varied to

create input (time series) signal-to-noise ratios (SNRs) of

-3, -6, -9, and -12 dB where SNR is as defined in Chapter II.

Appendix C shows 10 different noise realizations at each SNR

for a given value of 3. The objectives of the investigation

were three-fold:
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1) To heuristically determine an "optimum" value for the

parameter 1, given the test conditions, dt the different input

SNR's.

2) To determine the input SNR of the time series (for 128

data points zero-padded to 256) at which the Kalman algorithm,

given the "optimum" 3, can reliably discriminate noise

perturbation from signal peaks.

3) To determine if the Kalman algorithm preserves the

spectral resolution of the unfiltered periodogram.

After many trials, it was determined that values for 0 in

the range 100,000 to 700,000 provided the best compromise

between undersmoothing and oversmoothing the spectral data.

Within this optimum range, 100,000 causes the least smoothing

and 700,000 the most. The the lowest input SNR (time series)

at which reliable signal discrimination was achieved was

-6 dB. At -6 dB, 1 = 300,000 gave generally good results.

Signals could be detected at SNRs (time series) as low as

-12 dB, depending on the noise realization (see Appendix C).

The consequences of too large or too small a P in the

frequency domain are analogous to the time series example

depicted in Figure 14 - 16. Figure 17 illustrates the results

of the Kalman filter at an input SNR (time series) of -6 dB

(128 data points zero-padded to 256), P= 300,000. Note that

the single spectral peak due to the sinusoid has been left

largely unaltered (unbroadened) and that we have successfully

smoothed the noise portion of the periodogram. The filtered
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periodogram, Figure 17, more closely approximates the ideal

model of a spectral peak protruding up through a noise floor

of constant value. In all cases, the Kalman filter was

applied to periodograms of unwindowed (rectangular window)

data. This resulted in the most narrow of possible main lobes

and provides the highest resolution. For comparison, a

Hamming window was applied to the time series data prior tc

transformation (Figure 17). Some spectral smoothing is

apparent along with the expected main lobe broadening. The

noise floor is far less apparent than in the Kalman filtered

periodogram. Figures 18 through 20 demonstrate the effects

of varying 3 for a given noise realization, data/transform

length and input SNR. In Figure 18, using P= 10.0, we obtain

some smoothing, but the cnd result is little improvement over

what is obtained with the Hamming window (Figure 18). Note

that even at this low value of P, we have smoothed the spectra

and preserved the narrowness of the main lobe. Figure 19,

= 2.00 x 10s, illustrates the effect of a P which is too large

for the given input SNR and noise realization. Note the

tapering effect on the higher frequency side of the main lobe.

This is a symptom of over-filtering (over-smoothing) caused

by too large a value of 0. A smaller, closer-to-ideal / would

have caused the filter to reinitialize after the peak and thus

preserve the sharp down-transition of the original

periodogram. In this case, the filter did not reinitialize

and smoothed the higher frequency side of the main lobe.
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Whenever this tapering effect is encountered, better results

(sharper main lobe) can usually be obtained by reducing P.

Figure 20, p = 5.00 x 106, demonstrates obliteration of the

original spectra caused by a 0 which is grossly too large.

Figures B.1 and B.2 in Appendix B show the effect of varying

P over a wide range for a given data record length, transform

length, input SNR, and noise realization.
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C. EFFECTS ON SPECTRAL RESOLUTION

In order to evaluate the effects of the Kalman filter on

spectral resolution, a second spectral component was added to

the test data. For the test periodogram, bin width is fs/N =

64/128 = 0.5 Hz. Note that we used N = 128, the data record

size, and not N = 256, the transform length. As stated in

Chapter II, zero-padding does not improve frequency

resolution. It merely allows us to interpolate more frequency

points. Initially, a second sinusoid (also unit amplitude)

at 13.9 Hz was introduced. The frequency 13.9 Hz, like 10.7

Hz, is not a bin center and is many bin widths separate from

10.7 Hz. With 6= 30,000, the Kalman filter successfully

discriminated the signal peaks from the background noise (see

Figure 21). Next, the second sinusoidal frequency was brought

in to 11.2 Hz, one binwidth separation from the original

signal at 10.7 Hz. This is close to the 0.89 binwidth

resolution limit of the rectangular window. The two peaks are

clearly visible in the unfiltered periodogram (see Figure 22).

After filtering by the Kalman filter, the spectral estimate

is smoothed and the resolution of the original periodogram is

preserved as evidenced by the two still-visible spectral peaks

(see Figure 22).
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D. THE NOISE-ONLY AND SIGNAL-ONLY CASES

The effects of the Kalman filter on noise-only and signal-

only periodograms was tested. Figures 23-25 show the Kalman

filter applied to three different realizations of Gaussian

white noise, zero mean, 0.5 variance. As before, 128 sample

points were zero-padded to 256. Using our "ideal" 0 of

300,000, no sharp spectral peaks were discriminated. This was

to be expected since no dominant spectral component was

present. Contrast these results with Figure 26, which is the

Kalman filter applied to signal-only data. In Figure 26a, the

characteristic sinc function, translated up to the sinusoidal

frequency 10.7 Hz, is visible. Figure 26b shows the well-

known smoothing and broadening effects of the Hamming window.

In Figure 2Gc, with P = 300000, the Kalman filter smootAed the

side lobe structure of the sinc and preserved the narrow spike

of the main spectral peak.
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E. THE EFFECT OF DATA RECORD AND TRANSFORM LENGTH

Finally, the number of data points was increased from 128

to 256, 512 and 1024. The objective was to evaluate the

performance of the Kalman filter for a given input signal

strength (in this case +12 dB) at different length

periodograms. In each case, the data record was zero-padded

to twice its original length (i.e., 512 points zero-padded to

1024). Also in each case, the input SNR was decreased in

order to compensate for the increased processing gain caused

by the data record. Processing gain is approximated by:

processing gain [log, (data record length)-l]x3 dB (3.27)

For example, in our baseline case of 128 points, the

expected processing gain is [log2 (128)-1]x3 dB = 18 dB. For

an input SNR of -6 dB, the expected output SNR is then 18-6

= 12 dB, which is approximately the strength of the peak in

Figure 17. For the longer data trials, the additive noise

variance (power) was increased in order to maintain output SNR

at approximately 12 dB. Initial results indicate a dependence

of P on data/transform length. As the data/transform length

increases, better results may be obtained by increasing P (see

Appendix D).
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IV. CONCLUSIONS

The Kalman filter can enhance the spectral peaks of a

periodogram of an unwindowed time series. This is most

apparent in the single spectral peak case. In the case of

multiple spectral peaks, the resolution of the unfiltered

periodogram is largely preserved since the Kalman filter will

smooth the spectral estimate without major broadening the

narrow band components. Using a filter parameter in the range

100,000 to 700,000 and a 128-point data record zero-padded to

256 points, reliable signal detection was achieved at SNR's

of -6 dB of the time series. Signal detection is possible

down to -12 dB (of the time series SNR), depending on the

noise realization used.

Topics for further study are the application of the Kalman

filter to multidimensional (time varying) spectra, and

quantification of selection criteria for the filter parameter

P. In addition, the dependence of P o.) input SNR, output SNR,

record length and/or transform length should be examined.

Another possible follow-on project is the development of an

enhanced Kalman filtering algorithm that adjusts the parameter

P based on the assignment of signal or noise only. This would

mean faster filter response during signal portions and slower

response during noise-only segments.
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APPENDIX A
COMPUTER CODE

The Kalman filtering program was originally written in

FORTRAN 77. The FORTRAN code is given in Appendix A.l. For

this thesis, the filter program was converted to PC-MATLAB

(Version 3.13) and simulations run on an 80386-based IBM

compatible PC. The MATLAB code for the filtering program is

given in Appendix A.2
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SECTION A.1
FORTRAN Computer Code

c ** Nonstationary filtering using
c * suboptimal kalman filtering (local
c ** average), and gibbs field with
c * anihiling.
C

c '* The input file must given on I11PUT.DAT
c ** The filtered output file is stored on OUTPUT.DAT
C * The detected breackpoints are given in MODEL.DAT
c ** All these *.DAT files are ASCII.
c
c ** The program now works for 128 data points (see the variable
c I "npoints" below. This can be changed to any number of points.
c
c * The program requires to enter 2 parameters:
c ** "sigma": the value of the noise standard deviation (nonzero);
c ** "beta ": a positive parameter. It Is a measure of the probability
c ** the signal having a jump. As is now this parameter is
c set by pure trial and error. If you get too many
c jumps detected it means that beta is too low. If you get
c ** too few Jumps it means that beta is too large. However
c ** usually the best value of beta depends on the signal to
c noise ratio of the data.
C

real yin(256), y(256), x(2,256)
real kl,k2
integer pointer(2, 256), t, oot
integer mout(256)
open(l, file='output.dat', status='old')
open (2, file= 'input.dat', statrs='old')
open(3, file= 'model.dat', status='old')
** get data from file
rewind I
rewind 2
rewind 3

C *

npo| ints= 128

do 50 t=l,npoints
read (2,222) y(t)
yin(t)=y(t)

c write(*, Ill) y(t.)
continue

22? format(fd.4)
c ** enter data and initialize

write(*,5 55)
format(' ENTER: sigqma,bet I

read(*,666) sigma, ieta
666 format(2fl0.4)

sv2=slgma**2

el0.0
e2=0.0
dl=0.0
d2=(0.
x(l, )=y()
x(2,1)=y(l)
tall 1

C main loop
do 100 t-1, (nipolnts-1)

6G



c

kl=1 .0/ (tau+ 1.0)
xII=X(1,t) + kI*(y(t)-X(I,t))
dl 1=dl-beta
ell=el+(1.0/(2.0*sv2))*(y(t+lIhXll)**2
cII..e1I+d1I

k2=1.0
X12=X(1,t) + k2*(y(t)-x(l,t))
dl2=dlfbeta
e12=el4(1.0,/(2.0*sv2))*(y(t4l)-xl2)**2
cl2=el24d12

k(1= 0. 5
x21=x(2,t) + kl*(y(tj-x(2,t))
d2l=d2-beta

c2l=e2l+d2l

),.2=1 . 0
x22=x(2,t) 4 )2*(y(t)-x(2,t))
d22 -d2 ibeta
e22=e24(1.0/(2.Oksv2))Piy(tt1)-x22)**2
c22=e224d22

c

c write(*,444) t,dil,ell ,dl2,e12,d21 ,e2l
414 formnat(13,3(flO.2, flO.2,2x))
C

S *** update states in dynamic prey.

i f (cli . I e. c2 ) then
x (1 t 1) =xl 1
el=ei I

tau=tauI I

el-e2 1
dl =d2 I
cl=el+dI
tau --2
p0 iter (1 , t )=2

endi f
C

if (c22.1t.cl2) then
x (2 ,t 1)) , 22
e2=e22
(12- 122
c2 -2 *d2
poi nter (2 t 4 1

Y (2, t 1) =xl2
e2 -e3 2
(1 2 (11 2

ro2nt' (r2,t1

('GiT



100 continue
C
c backward substitution and smoothing

tau=1 .0
if(cl.le.c2) then

out=l
else

out=2
endif

c
y(npoints)=~x(out, npoints)
n2=0
do 150 t=npoints,2,-l

out=pointor(out, t)

if (out.erq.2) then
tau=1 .0

else
tau'~tau* 1.0

endif

rnout (t-3 ) =out*100
c write(1,113) xout

n2=n2+oiut-1
c write(*,333) t, out
333 format (2 (2x, 15))
15j0 continue
c

sigma=0 .0
do 800 t=1,npoints
write(1, 111) y(t)
wr te (3, 334) mout (t)

314 formAt.(i5)

sigma=sigma + (1.O/t)*(ye-slgma)
300 continue

s iyma=sqrt (sigma)
write(*,777) sigma, n2, npoirnts

III format( f8.4)
c

rewind I
rewind 2
s top
end



SECTION A.2
PC-MATLAB Computer Code

EC THESIS GO, W. W.

THEIO.M KALMAN FILTER APPLIED TO PERIODOGRAM OF TWO SINUSOIDS
IN GAUSSIAN WHITE NOISE. 128 DATA POINTS ARE ZERO-
PADDED TO 256 AND THEN TIE PERIODOGRAM IS COMPUTED.
ONLY HALF OF THE RESULTING FREQUENCY POINTS (UP TO
ONE-HALF OF THE SAMPLING FREQUENCY) ARE PLOTTED AND USED
AS INPUT TO THE KALMAN FILTER. THE FOLLOWING CASES
ARE PLOTTED:

1) PERIODOGRAM, RECTANGULAR WINDOW ON TIME DATA
2) PERIODOCRAM, HAMMING WINDOW ON TIME DATA
3) OUTPUT OF KALMAN FILTER APPLIED TO PERIODOGRAM

OF RECTANGULARLY WINDOWED DATA (CASE I).

I

% The program requires 2 parameters to be specified:
% "sigma": the value of the noise standard deviation (nonzero);
% "beta ": A positive parameter. It is a measure of the probability
% of the signal having a jump. Now this parameter is
1 set by pure trial and error. If you get too many
1 jumps detected it means that beta is too low. If you get
I too few jumps it means that beta is too large.

NOTE 1: THIS PROGRAM UTILIZES MATIAB FUNCTIONS PER.M AND PERLN.M
(CODE FOLLOWS MAIN PROGRAM) TO COMPUTE THE PERIODOGRAM
IN dB AND LINEAR UNITS RESPECTIVELY.

NOTE 2: TH|IS PROGRAM UTILIZES MATLAB FUNCTION FVEC.M (CODE
FOLLOWS MAIN PROGRAM) TO CREATE A FREQUENCY VECTOR
FOR PLOTTING.

fl= 10.7Hz, NOT A BIN CENTER
f2= 11.2, NOT A BIN CENTER

1 fs = 64 11z, SAMPLING FPEQUEIJCY
1 128 DATA POINTS ZEIRO-PADDED TO 256
1 WHITE NOISE VARIANCE = 4000/2000
% INPUT SNR -6.02dB

clear
ci9
fl= 10.7 % f is frequency
f2- 11.2
fs = 64 1 1 fs is sampling frequency

nvar=4000/2000; % noise variance

for n= 0 : 127 ; % compute signal vector
x(n+l) = cos(n-2*pi*(f]/fs)) 4 cos(n*2*pi*(f2/fs));

end

rand('normal');
iand('seed',3 )
nz=sqrt(nvar).*rand(1:f28); % noise vector

xn-x +nz; % corrupt signal with noise
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W=hamming(l28); I Hamming window
xnw-w'.*xn; % apply Hamming window

xp- xn zeros(l:128) )

xpw= (xnw zeros(1:l28) )

psd -perln(xp) ; % periodogram(linear units)
teat-per(xp); I pexiodoyrarldB)

testw-per(xpw);

freq=fvec(64,kp); %frequency vector for plotting

subplot(211) ,plot(freq(1: 128) ,test(l: 128))
title('THE1O:2 SIN IN VOISE,SI1R -6.O2dB,fl=1O.7,f2-l1.2')
xlabel ('frequency')
ylabel ('magnitude')

% subplot(211) ,plot(freq(l:128) ,testw(1:128))
% title('THE1O:2 SIN IN NOISE,1IAM WIN*SNR -6.O2dB,fl-10.7,f2-11.2')
% xlabel ('frequency')
% ylabel('magnitude')
% meta preplt2

% pause

y= psd(1:128);

KALMHAN FILTER
1, IS DATA RECORD. FILTER IS APPLIED TO PERIODOGRAM IN
LINEAR UMITS.

x=zeros(2,128);
pointer-zeros(2,128);
yin = y

beta -500000.0; % filter parameter
sigma - sgrt(nvar); % noise s tandard d~viation
gv2=sigma^2;

npoint ;=length(y);

el-0.0;
e2=0. 0;

dl=0.0;
d2=0. 0;

x (1 , )=Y (I);I
x (2 ,1 )=y (1);

tau=1 .0;

MAIN LOOP
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for t=1: (npolflts-1);
kl1I.0/(taU4 1.0);

dll=d 1-beta;

ell=el4(1.0/(2.0*sv2))*C(y(t~lh-xll)'
2
);

c11=eI1+dll;

k=.0;

X12=x(1,t)4k2*(y(t)-x(1,t)),
d12=dl+beta;
el2=el+(1.0/(2.0OSv2)*((y(t+lh-xl2)'

2
);

c12-e12+dI2;

k1=0- 5;

d2l=d2-beta:
e2l = e24 (1.0/(2.0*sv2) ) ( (y(t+l)-x2l) '2);
c21=e21+d21;

k,2 1.0;

d22=d24 beta;
e22=e24(1.0/(2.0*5-v2))*((y(t+l1hx2

2
)^

2
);

c22=e22+d?22

UPDATE STATES IN DYN;AMIC ]PROGRAM.

if cllI<c2l
X(I~tl) 11;

elell
dldll

paintpr (1,t+ ) =1
tall = ta3'il;

else
x (l.t4l)=x2l
ele2l;
dl ' 2 1;
c]-'el 'dl;
tau- 2;

end

if c2?KCl2
X (2, t'l)=x22;
e 2 - 2 2
d2 -122;
c2-e? 'd2

e2-el 2;

Cl 2 dl

poinlter (2 , t) + I
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end

end

END MAIN LO~OP

BACKWARDS SMOOTHING AND SUBSTITUTION

tau-1.0;

if cl~c2
out=1;

else
out=2;

end

y (npoints)=x(out, npoiflts);

for t-128:-1:2
out='pointer(out,t);
xout=x(out,t-l);

if Dat==2
tan=1 .0;
y(t-l)=xout;

else
tau=taU' 1;

end

y ft-I) =xout;
end

trans(t-l) =out;
end

ynorm=(I/rtx(y)) .*y;
ydb=l0*loglo(ynorm);

ysh= ( ydb(2:lengthi(ydb)) ydli)(1;

subplot(212),plot(frel(1:128),y~li)
title('TIIElO:KAL,SIR -6.02,F3ETA 500000.0')

xlabel('frequency')
ylabel('rnagnitude dB')

pause

% plot(trans, '-*) ,title('trannsitioni pts')



EC THESIS GO. W.W.

PER.K COMPUTE THE PERIODOGRAM OF DATA VECTOR X

function y-per(x)
1=length(x);
tr-fft(x),

for 1=O0-(1-1);

end

psnorm=(1/max(ps)) .*ps;
y=1O*1oglO(psnorn);



EC THESIS GO. W.W.

PERLN.M COMPUTE THlE PERIODOGRAM OF DATA VECT~OR X
LINEAR UNITS

function y-perln(x)
1=length(x);
tr=fft(x);

for i-0:0(-1);

end

y~ps;



EC THESIS GO,W.W.

FVEC.M CREATE THlE FREQUENJCY VECTOR USED IN PLOTTING
A PERIODOGRAM. fs IS THE SAMPLING FREQUENCY
AND) X IS THlE DATA VECTOR.

function f=fveC(fs,x)

n=length(x);

f-fs*(O:n-l)/n;



APPENDIX B
EFFECTS OF THE KALMAN FILTER PARAMETER

The effects of changing the parameter p on the performance

of the Kalman filter were investigated. The test data was a

single sinusoid, with frequency of 10.7 Hz, embedded in

Gaussian white noise. The frequency 10.7 Hz was specifically

chosen so as not to be at a bin center of the FFT. A record

of 128 data points was zero-padded to 256. The input SNR of

the time series was -6 dB. The same noise realization was

used for all runs. Figure B.1 shows the unfiltered

(rectangular windowed) and Hamming windowed periodograms.

Figures B.2a through B.2j show the filtered periodograms for

ten different values of 3. As discussed in Chapter 3, 0 in

the range 100,000 to 700,000 produced the best results.

Values for P below this range tend not to smooth the spwctral

estimate enough to significantly enhance the main spectral

peaks. Values of P above this range tend to oversmooth and

obliterate the spectral estimate (depending on the noise

realization).
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APPENDIX C
PERFORMANCE OF THE KALMAN FILTER AT DIFFERENT
INPUT SNR'S ON MULTIPLE NOISE REALIZATIONS

The performance of the Kalman filter at different input

SNRs was evaluated. The test case was a single sinusoid,

frequency 10.7 Hz (not a FFT bin center). A record of 128

data points was zero-padded to 256. The Kalman filter was

run on data with time series SNRs of -3, -6, -9, and -12 dB.

Ten different noise realizations were used at each SNR. Plots

are shown in Figures C.1 through C.40. For comparison, the

unfiltered and Hamming windowed pe-iodograms are also shown

for each simulation. At -6 dB (time series SNR), reliable

detection was achieved for all noise realizations tested.
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APPENDIX D
EFFECTS OF DATA/TRANSFORM LENGTH

The effects of varying the data/transform length on the

performance of the Kalman filter were investigated. The

baseline test case was a pair of sinusoids, frequencies 10.7

and 13.9 Hz (not at FFT bin centers) embedded in Gaussian

white noise. Data records of 128, 512, anc. 1024 points were

zero-padded to twice their original length. As discussed in

Chapter III, the time series input SNR was decreased with

increasing data/transform length in order to compensate for

the higher processing gains of the longer data records (so as

to maintain the SNR at the input to the Kalman filter at

approximately 12 dB). A 0 of 300,000 was used since this

value gave good results with the baseline 128 data point test

case. Results are given in Figures D.1 through D.3. For

comparison, the unfiltered periodograms are also shown for

each data/transform length. Results indicate that as data

transform length is increased, 0 may have to be increased in

order to obtain optimum smoothing of the spectral estimate.

The dependence of 3 upon transform/data length is a potential

topic for follow-on study.
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